Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Brain Commun ; 4(6): fcac248, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36458209

RESUMO

Mutant messenger RNA (mRNA) and protein contribute to the clinical manifestation of many repeat-associated neurological disorders, with the presence of nuclear RNA clusters being a common pathological feature. Yet, investigations into Huntington's disease-caused by a CAG repeat expansion in exon 1 of the huntingtin (HTT) gene-have primarily focused on toxic protein gain-of-function as the primary disease-causing feature. To date, mutant HTT mRNA has not been identified as an in vivo hallmark of Huntington's disease. Here, we report that, in two Huntington's disease mouse models (YAC128 and BACHD-97Q-ΔN17), mutant HTT mRNA is retained in the nucleus. Widespread formation of large mRNA clusters (∼0.6-5 µm3) occurred in 50-75% of striatal and cortical neurons. Cluster formation was independent of age and driven by expanded repeats. Clusters associate with chromosomal transcriptional sites and quantitatively co-localize with the aberrantly processed N-terminal exon 1-intron 1 mRNA isoform, HTT1a. HTT1a mRNA clusters are observed in a subset of neurons from human Huntington's disease post-mortem brain and are likely caused by somatic expansion of repeats. In YAC128 mice, clusters, but not individual HTT mRNA, are resistant to antisense oligonucleotide treatment. Our findings identify mutant HTT/HTT1a mRNA clustering as an early, robust molecular signature of Huntington's disease, providing in vivo evidence that Huntington's disease is a repeat expansion disease with mRNA involvement.

2.
iScience ; 16: 230-241, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31195240

RESUMO

Exosomes can serve as delivery vehicles for advanced therapeutics. The components necessary and sufficient to support exosomal delivery have not been established. Here we connect biochemical composition and activity of exosomes to optimize exosome-mediated delivery of small interfering RNAs (siRNAs). This information is used to create effective artificial exosomes. We show that serum-deprived mesenchymal stem cells produce exosomes up to 22-fold more effective at delivering siRNAs to neurons than exosomes derived from control cells. Proteinase treatment of exosomes stops siRNA transfer, indicating that surface proteins on exosomes are involved in trafficking. Proteomic and lipidomic analyses show that exosomes derived in serum-deprived conditions are enriched in six protein pathways and one lipid class, dilysocardiolipin. Inspired by these findings, we engineer an "artificial exosome," in which the incorporation of one lipid (dilysocardiolipin) and three proteins (Rab7, Desmoplakin, and AHSG) into conventional neutral liposomes produces vesicles that mimic cargo delivering activity of natural exosomes.

3.
Mol Ther ; 26(12): 2838-2847, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30341012

RESUMO

Exosomes can deliver therapeutic RNAs to neurons. The composition and the safety profile of exosomes depend on the type of the exosome-producing cell. Mesenchymal stem cells are considered to be an attractive cell type for therapeutic exosome production. However, scalable methods to isolate and manufacture exosomes from mesenchymal stem cells are lacking, a limitation to the clinical translation of exosome technology. We evaluate mesenchymal stem cells from different sources and find that umbilical cord-derived mesenchymal stem cells produce the highest exosome yield. To optimize exosome production, we cultivate umbilical cord-derived mesenchymal stem cells in scalable microcarrier-based three-dimensional (3D) cultures. In combination with the conventional differential ultracentrifugation, 3D culture yields 20-fold more exosomes (3D-UC-exosomes) than two-dimensional cultures (2D-UC-exosomes). Tangential flow filtration (TFF) in combination with 3D mesenchymal stem cell cultures further improves the yield of exosomes (3D-TFF-exosomes) 7-fold over 3D-UC-exosomes. 3D-TFF-exosomes are seven times more potent in small interfering RNA (siRNA) transfer to neurons compared with 2D-UC-exosomes. Microcarrier-based 3D culture and TFF allow scalable production of biologically active exosomes from mesenchymal stem cells. These findings lift a major roadblock for the clinical utility of mesenchymal stem cell exosomes.


Assuntos
Exossomos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Animais , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Feminino , Inativação Gênica , Células-Tronco Mesenquimais/citologia , Camundongos , Neurônios/metabolismo , Proteoma , RNA Interferente Pequeno/genética , Esferoides Celulares , Cordão Umbilical/citologia
4.
Cell Rep ; 24(10): 2553-2560.e5, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30184490

RESUMO

Huntington's disease (HD) is a monogenic neurodegenerative disorder representing an ideal candidate for gene silencing with oligonucleotide therapeutics (i.e., antisense oligonucleotides [ASOs] and small interfering RNAs [siRNAs]). Using an ultra-sensitive branched fluorescence in situ hybridization (FISH) method, we show that ∼50% of wild-type HTT mRNA localizes to the nucleus and that its nuclear localization is observed only in neuronal cells. In mouse brain sections, we detect Htt mRNA predominantly in neurons, with a wide range of Htt foci observed per cell. We further show that siRNAs and ASOs efficiently eliminate cytoplasmic HTT mRNA and HTT protein, but only ASOs induce a partial but significant reduction of nuclear HTT mRNA. We speculate that, like other mRNAs, HTT mRNA subcellular localization might play a role in important neuronal regulatory mechanisms.


Assuntos
Doença de Huntington/metabolismo , Neurônios/citologia , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Animais , Núcleo Celular/metabolismo , Células Cultivadas , Feminino , Inativação Gênica , Células HeLa , Humanos , Hibridização in Situ Fluorescente , Camundongos , Oligonucleotídeos Antissenso/genética , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/fisiologia , Expansão das Repetições de Trinucleotídeos/genética
5.
Mol Ther ; 26(8): 1973-1982, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29937418

RESUMO

Extracellular vesicles are promising delivery vesicles for therapeutic RNAs. Small interfering RNA (siRNA) conjugation to cholesterol enables efficient and reproducible loading of extracellular vesicles with the therapeutic cargo. siRNAs are typically chemically modified to fit an application. However, siRNA chemical modification pattern has not been specifically optimized for extracellular vesicle-mediated delivery. Here we used cholesterol-conjugated, hydrophobically modified asymmetric siRNAs (hsiRNAs) to evaluate the effect of backbone, 5'-phosphate, and linker chemical modifications on productive hsiRNA loading onto extracellular vesicles. hsiRNAs with a combination of 5'-(E)-vinylphosphonate and alternating 2'-fluoro and 2'-O-methyl backbone modifications outperformed previously used partially modified siRNAs in extracellular vesicle-mediated Huntingtin silencing in neurons. Between two commercially available linkers (triethyl glycol [TEG] and 2-aminobutyl-1-3-propanediol [C7]) widely used to attach cholesterol to siRNAs, TEG is preferred compared to C7 for productive exosomal loading. Destabilization of the linker completely abolished silencing activity of loaded extracellular vesicles. The loading of cholesterol-conjugated siRNAs was saturated at ∼3,000 siRNA copies per extracellular vesicle. Overloading impaired the silencing activity of extracellular vesicles. The data reported here provide an optimization scheme for the successful use of hydrophobic modification as a strategy for productive loading of RNA cargo onto extracellular vesicles.


Assuntos
Colesterol/química , Vesículas Extracelulares/química , Proteína Huntingtina/genética , RNA Interferente Pequeno/química , Animais , Células Cultivadas , Humanos , Camundongos , Mutação , Propilenoglicóis/química
6.
Mol Ther ; 26(6): 1520-1528, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29699940

RESUMO

Small extracellular vesicles (sEVs) show promise as natural nano-devices for delivery of therapeutic RNA, but efficient loading of therapeutic RNA remains a challenge. We have recently shown that the attachment of cholesterol to small interfering RNAs (siRNAs) enables efficient and productive loading into sEVs. Here, we systematically explore the ability of lipid conjugates-fatty acids, sterols, and vitamins-to load siRNAs into sEVs and support gene silencing in primary neurons. Hydrophobicity of the conjugated siRNAs defined loading efficiency and the silencing activity of siRNA-sEVs complexes. Vitamin-E-conjugated siRNA supported the best loading into sEVs and productive RNA delivery to neurons.


Assuntos
Vesículas Extracelulares/química , Lipídeos/química , RNA Interferente Pequeno/química , Células Cultivadas , Inativação Gênica/fisiologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Interferência de RNA
7.
Methods Mol Biol ; 1740: 199-214, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29388146

RESUMO

Delivery represents a significant barrier to the clinical advancement of oligonucleotide therapeutics. Small, endogenous extracellular vesicles (EVs) have the potential to act as oligonucleotide delivery vehicles, but robust and scalable methods for loading RNA therapeutic cargo into vesicles are lacking. Here we describe the efficient loading of hydrophobically modified siRNAs (hsiRNAs) into EVs upon co-incubation, without altering vesicle size distribution or integrity. This method is expected to advance the development of EV-based therapies for the treatment of a broad range of disorders.


Assuntos
Vesículas Extracelulares/química , RNA Interferente Pequeno/administração & dosagem , Animais , Técnicas de Cultura de Células , Sistemas de Liberação de Medicamentos , Humanos , Interações Hidrofóbicas e Hidrofílicas , RNA Interferente Pequeno/química
8.
Bio Protoc ; 7(16)2017 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-28966945

RESUMO

Primary neurons represent an ideal cellular system for the identification of therapeutic oligonucleotides for the treatment of neurodegenerative diseases. However, due to the sensitive nature of primary cells, the transfection of small interfering RNAs (siRNA) using classical methods is laborious and often shows low efficiency. Recent progress in oligonucleotide chemistry has enabled the development of stabilized and hydrophobically modified small interfering RNAs (hsiRNAs). This new class of oligonucleotide therapeutics shows extremely efficient self-delivery properties and supports potent and durable effects in vitro and in vivo. We have developed a high-throughput in vitro assay to identify and test hsiRNAs in primary neuronal cultures. To simply, rapidly, and accurately quantify the mRNA silencing of hundreds of hsiRNAs, we use the QuantiGene 2.0 quantitative gene expression assay. This high-throughput, 96-well plate-based assay can quantify mRNA levels directly from sample lysate. Here, we describe a method to prepare short-term cultures of mouse primary cortical neurons in a 96-well plate format for high-throughput testing of oligonucleotide therapeutics. This method supports the testing of hsiRNA libraries and the identification of potential therapeutics within just two weeks. We detail methodologies of our high throughput assay workflow from primary neuron preparation to data analysis. This method can help identify oligonucleotide therapeutics for treatment of various neurological diseases.

9.
Bio Protoc ; 7(20)2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28868334

RESUMO

Efficient delivery of oligonucleotide therapeutics, i.e., siRNAs, to the central nervous system represents a significant barrier to their clinical advancement for the treatment of neurological disorders. Small, endogenous extracellular vesicles were shown to be able to transport lipids, proteins and RNA between cells, including neurons. This natural trafficking ability gives extracellular vesicles the potential to be used as delivery vehicles for oligonucleotides, i.e., siRNAs. However, robust and scalable methods for loading of extracellular vesicles with oligonucleotide cargo are lacking. We describe a detailed protocol for the loading of hydrophobically modified siRNAs into extracellular vesicles upon simple co-incubation. We detail methods of the workflow from purification of extracellular vesicles to data analysis. This method may advance extracellular vesicles-based therapies for the treatment of a broad range of neurological disorders.

10.
Nucleic Acids Res ; 45(1): 15-25, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27899655

RESUMO

siRNAs are a new class of therapeutic modalities with promising clinical efficacy that requires modification or formulation for delivery to the tissue and cell of interest. Conjugation of siRNAs to lipophilic groups supports efficient cellular uptake by a mechanism that is not well characterized. Here we study the mechanism of internalization of asymmetric, chemically stabilized, cholesterol-modified siRNAs (sd-rxRNAs®) that efficiently enter cells and tissues without the need for formulation. We demonstrate that uptake is rapid with significant membrane association within minutes of exposure followed by the formation of vesicular structures and internalization. Furthermore, sd-rxRNAs are internalized by a specific class of early endosomes and show preferential association with epidermal growth factor (EGF) but not transferrin (Tf) trafficking pathways as shown by live cell TIRF and structured illumination microscopy (SIM). In fixed cells, we observe ∼25% of sd-rxRNA co-localizing with EGF and <5% with Tf, which is indicative of selective endosomal sorting. Likewise, preferential sd-rxRNA co-localization was demonstrated with EEA1 but not RBSN-containing endosomes, consistent with preferential EGF-like trafficking through EEA1-containing endosomes. sd-rxRNA cellular uptake is a two-step process, with rapid membrane association followed by internalization through a selective, saturable subset of the endocytic process. However, the mechanistic role of EEA1 is not yet known. This method of visualization can be used to better understand the kinetics and mechanisms of hydrophobic siRNA cellular uptake and will assist in further optimization of these types of compounds for therapeutic intervention.


Assuntos
Colesterol/química , Endossomos/metabolismo , Fator de Crescimento Epidérmico/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Transporte Biológico , Células COS , Chlorocebus aethiops , Colesterol/metabolismo , Ciclofilinas/genética , Ciclofilinas/metabolismo , Endocitose , Fator de Crescimento Epidérmico/genética , Expressão Gênica , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Fluorescência , RNA Interferente Pequeno/química , Transferrina/genética , Transferrina/metabolismo , Proteínas de Transporte Vesicular/genética
11.
J Extracell Vesicles ; 5: 32570, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27863537

RESUMO

Extracellular vesicles (EVs), including exosomes and microvesicles (MVs), are explored for use in diagnostics, therapeutics and drug delivery. However, little is known about the relationship of protein and lipid composition of EVs and their source cells. Here, we report high-resolution lipidomic and proteomic analyses of exosomes and MVs derived by differential ultracentrifugation from 3 different cell types: U87 glioblastoma cells, Huh7 hepatocellular carcinoma cells and human bone marrow-derived mesenchymal stem cells (MSCs). We identified 3,532 proteins and 1,961 lipid species in the screen. Exosomes differed from MVs in several different areas: (a) The protein patterns of exosomes were more likely different from their cells of origin than were the protein patterns of MVs; (b) The proteomes of U87 and Huh7 exosomes were similar to each other but different from the proteomes of MSC exosomes, whereas the lipidomes of Huh7 and MSC exosomes were similar to each other but different from the lipidomes of U87 exosomes; (c) exosomes exhibited proteins of extracellular matrix, heparin-binding, receptors, immune response and cell adhesion functions, whereas MVs were enriched in endoplasmic reticulum, proteasome and mitochondrial proteins. Exosomes and MVs also differed in their types of lipid contents. Enrichment in glycolipids and free fatty acids characterized exosomes, whereas enrichment in ceramides and sphingomyelins characterized MVs. Furthermore, Huh7 and MSC exosomes were specifically enriched in cardiolipins; U87 exosomes were enriched in sphingomyelins. This study comprehensively analyses the protein and lipid composition of exosomes, MVs and source cells in 3 different cell types.

12.
Mol Ther ; 24(10): 1836-1847, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27506293

RESUMO

Delivery represents a significant barrier to the clinical advancement of oligonucleotide therapeutics for the treatment of neurological disorders, such as Huntington's disease. Small, endogenous vesicles known as exosomes have the potential to act as oligonucleotide delivery vehicles, but robust and scalable methods for loading RNA therapeutic cargo into exosomes are lacking. Here, we show that hydrophobically modified small interfering RNAs (hsiRNAs) efficiently load into exosomes upon co-incubation, without altering vesicle size distribution or integrity. Exosomes loaded with hsiRNAs targeting Huntingtin mRNA were efficiently internalized by mouse primary cortical neurons and promoted dose-dependent silencing of Huntingtin mRNA and protein. Unilateral infusion of hsiRNA-loaded exosomes, but not hsiRNAs alone, into mouse striatum resulted in bilateral oligonucleotide distribution and statistically significant bilateral silencing of up to 35% of Huntingtin mRNA. The broad distribution and efficacy of hsiRNA-loaded exosomes delivered to brain is expected to advance the development of therapies for the treatment of Huntington's disease and other neurodegenerative disorders.


Assuntos
Exossomos/genética , Proteína Huntingtina/genética , Neurônios/metabolismo , RNA Interferente Pequeno/administração & dosagem , Animais , Células Cultivadas , Regulação da Expressão Gênica , Inativação Gênica , Terapia Genética , Humanos , Proteína Huntingtina/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Camundongos , RNA Interferente Pequeno/química , RNA Interferente Pequeno/farmacologia
13.
Mol Ther Nucleic Acids ; 4: e266, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26623938

RESUMO

Applications of RNA interference for neuroscience research have been limited by a lack of simple and efficient methods to deliver oligonucleotides to primary neurons in culture and to the brain. Here, we show that primary neurons rapidly internalize hydrophobically modified siRNAs (hsiRNAs) added directly to the culture medium without lipid formulation. We identify functional hsiRNAs targeting the mRNA of huntingtin, the mutation of which is responsible for Huntington's disease, and show that direct uptake in neurons induces potent and specific silencing in vitro. Moreover, a single injection of unformulated hsiRNA into mouse brain silences Htt mRNA with minimal neuronal toxicity. Thus, hsiRNAs embody a class of therapeutic oligonucleotides that enable simple and straightforward functional studies of genes involved in neuronal biology and neurodegenerative disorders in a native biological context.

14.
Assay Drug Dev Technol ; 11(6): 355-66, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23906347

RESUMO

The use of small molecules to modulate cellular processes is a powerful approach to investigate gene function as a complement to genetic approaches. The discovery and characterization of compounds that modulate translation initiation, the rate-limiting step of protein synthesis, is important both to provide tool compounds to explore this fundamental biological process and to further evaluate protein synthesis as a therapeutic target. While most messenger ribonucleic acids (mRNAs) recruit ribosomes via their 5' cap, some viral and cellular mRNAs initiate protein synthesis via an alternative "cap-independent" mechanism utilizing internal ribosome entry sites (IRES) elements, which are complex mRNA secondary structures, localized within the 5' nontranslated region of the mRNA upstream of the AUG start codon. This report describes the design of a functional, high throughput screen of small molecules miniaturized into a 1,536-well format and performed using the luciferase reporter gene under control of the viral Cardiovirus encephalomyocarditis virus (EMCV) IRES element to identify nontoxic compounds modulating translation initiated from the EMCV IRES. One activating compound, validated in a dose response manner, has previously been shown to bind the glucocorticoid receptor (GR). Subsequent testing of additional GR modulators further supported this as the possible mechanism of action. Detailed characterization of this compound activity supported the notion that this was due to an effect at the level of translation.


Assuntos
Vírus da Encefalomiocardite/efeitos dos fármacos , Biossíntese de Proteínas/efeitos dos fármacos , Receptores de Glucocorticoides/efeitos dos fármacos , Ribossomos/virologia , Internalização do Vírus/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Desenho de Fármacos , Vírus da Encefalomiocardite/fisiologia , Ensaios de Triagem em Larga Escala , Humanos , Ligantes , Receptores de Glucocorticoides/fisiologia
15.
J Biomol Screen ; 18(4): 407-19, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23150017

RESUMO

Translation initiation is a fine-tuned process that plays a critical role in tumorigenesis. The use of small molecules that modulate mRNA translation provides tool compounds to explore the mechanism of translational initiation and to further validate protein synthesis as a potential pharmaceutical target for cancer therapeutics. This report describes the development and use of a click beetle, dual luciferase cell-based assay multiplexed with a measure of compound toxicity using resazurin to evaluate the differential effect of natural products on cap-dependent or internal ribosome entry site (IRES)-mediated translation initiation and cell viability. This screen identified a series of cardiac glycosides as inhibitors of IRES-mediated translation using, in particular, the oncogene mRNA c-Myc IRES. Treatment of c-Myc-dependent cancer cells with these compounds showed a decrease in c-Myc protein associated with a significant modulation of cell viability. These findings suggest that inhibition of IRES-mediated translation initiation may be a strategy to inhibit c-Myc-driven tumorigenesis.


Assuntos
Glicosídeos Cardíacos/análise , Glicosídeos Cardíacos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores da Síntese de Proteínas/farmacologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ribossomos/metabolismo , Apoptose/efeitos dos fármacos , Sequência de Bases , Bioensaio , Glicosídeos Cardíacos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cimarina/química , Cimarina/farmacologia , Dano ao DNA , Genes Reporter , Células HEK293 , Humanos , Concentração Inibidora 50 , Inibidores da Síntese de Proteínas/análise , Inibidores da Síntese de Proteínas/química , Proteínas Proto-Oncogênicas c-myc/antagonistas & inibidores , Ribossomos/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
16.
J Med Chem ; 55(3): 1161-70, 2012 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-22185196

RESUMO

Recently a novel method termed compound set enrichment (CSE) has been described that uses the activity distribution of a structural class of compounds to identify hit series from primary screening data. This report describes how this method can be used to identify such hit series, even when no hits according to conventional hit-calling methods for a given structural class are present in the data set. Such series, which were called latent hit series, were identified prospectively in a cell-based screening campaign and also in a series of retrospective analyses of publicly available data sets from PubChem. The assay used for the prospective case study was developed to identify compounds modulating protein translation directed from the internal ribosome entry site (IRES) of the encephalomyocarditis virus (EMCV) genomic RNA. The assay was designed with the ability to detect two assay readouts. The first assay readout monitors compound effects on IRES-directed translation, and the second readout monitors the cell viability and general effect on protein expression. By applying CSE separately to both of them, six validated latent hit series with apparently no effects on cell viability were identified. For each of these series, further testing of new compounds enabled identification of additional hits, also apparently with no effect on cell viability. These validated latent hit series would have been missed by a conventional cutoff-based hit-calling approach. This prospective study further supports CSE as a method for the analysis of high-throughput screening experiments.


Assuntos
Bases de Dados Factuais , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Ensaios de Triagem em Larga Escala , Relação Quantitativa Estrutura-Atividade , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Vírus da Encefalomiocardite/genética , Genes Reporter , Humanos , Luciferases de Vaga-Lume/biossíntese , Luciferases de Vaga-Lume/genética , Biossíntese de Proteínas/efeitos dos fármacos , RNA Viral/genética , Ribossomos/genética , Internalização do Vírus
17.
J Biomol Screen ; 16(7): 786-93, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21693766

RESUMO

High-throughput screening assays with multiple readouts enable one to monitor multiple assay parameters. By capturing as much information about the underlying biology as possible, the detection of true actives can be improved. This report describes an extension to standard luciferase reporter gene assays that enables multiple parameters to be monitored from each sample. The report describes multiplexing luciferase assays with an orthogonal readout monitoring cell viability using reduction of resazurin. In addition, this technical note shows that by using the luciferin substrate in live cells, an assay time course can be recorded. This enables the identification of nonactive or unspecific compounds that act by inhibiting luciferase, as well as compounds altering gene expression or cell growth.


Assuntos
Genes Reporter , Ensaios de Triagem em Larga Escala , Luciferases/genética , Luciferases/metabolismo , Anti-Infecciosos/farmacologia , Compostos de Benzalcônio/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Cicloeximida/farmacologia , Luciferina de Vaga-Lumes/análise , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Cinética , Oxazinas/metabolismo , Xantenos/metabolismo
18.
PLoS Biol ; 7(1): e16, 2009 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-19166269

RESUMO

Fragile X syndrome, the most frequent form of inherited mental retardation, is due to the absence of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein involved in several steps of RNA metabolism. To date, two RNA motifs have been found to mediate FMRP/RNA interaction, the G-quartet and the "kissing complex," which both induce translational repression in the presence of FMRP. We show here a new role for FMRP as a positive modulator of translation. FMRP specifically binds Superoxide Dismutase 1 (Sod1) mRNA with high affinity through a novel RNA motif, SoSLIP (Sod1 mRNA Stem Loops Interacting with FMRP), which is folded as three independent stem-loop structures. FMRP induces a structural modification of the SoSLIP motif upon its interaction with it. SoSLIP also behaves as a translational activator whose action is potentiated by the interaction with FMRP. The absence of FMRP results in decreased expression of Sod1. Because it has been observed that brain metabolism of FMR1 null mice is more sensitive to oxidative stress, we propose that the deregulation of Sod1 expression may be at the basis of several traits of the physiopathology of the Fragile X syndrome, such as anxiety, sleep troubles, and autism.


Assuntos
Proteína do X Frágil de Retardo Mental/genética , Síndrome do Cromossomo X Frágil/genética , Regulação da Expressão Gênica , RNA Mensageiro/metabolismo , Superóxido Dismutase/genética , Animais , Sítios de Ligação , Encéfalo/enzimologia , Proteína do X Frágil de Retardo Mental/metabolismo , Humanos , Camundongos , Camundongos Mutantes , Polirribossomos , Biossíntese de Proteínas , RNA Mensageiro/química , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
19.
Mol Biol Cell ; 20(1): 428-37, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19005212

RESUMO

The fragile X mental retardation protein (FMRP) is an RNA-binding protein involved in the mRNA metabolism. The absence of FMRP in neurons leads to alterations of the synaptic plasticity, probably as a result of translation regulation defects. The exact molecular mechanisms by which FMRP plays a role in translation regulation have remained elusive. The finding of an interaction between FMRP and the RNA interference silencing complex (RISC), a master of translation regulation, has suggested that both regulators could be functionally linked. We investigated here this link, and we show that FMRP exhibits little overlap both physically and functionally with the RISC machinery, excluding a direct impact of FMRP on RISC function. Our data indicate that FMRP and RISC are associated to distinct pools of mRNAs. FMRP, unlike RISC machinery, associates with the pool of mRNAs that eventually goes into stress granules upon cellular stress. Furthermore, we show that FMRP plays a positive role in this process as the lack of FMRP or a point mutant causing a severe fragile X alter stress granule formation. Our data support the proposal that FMRP plays a role in controlling the fate of mRNAs after translation arrest.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Proteína do X Frágil de Retardo Mental/metabolismo , RNA Mensageiro/metabolismo , Complexo de Inativação Induzido por RNA/metabolismo , Animais , Proteínas Argonautas , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Feminino , Proteína do X Frágil de Retardo Mental/genética , Humanos , Camundongos , Mutação Puntual , Gravidez , Biossíntese de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Interferência de RNA , RNA Mensageiro/genética , Estresse Fisiológico
20.
Nucleic Acids Res ; 36(15): 4902-12, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18653529

RESUMO

The fragile X mental retardation protein (FMRP) is a RNA-binding protein proposed to post-transcriptionally regulate the expression of genes important for neuronal development and synaptic plasticity. We previously demonstrated that FMRP binds to its own FMR1 mRNA via a guanine-quartet (G-quartet) RNA motif. However, the functional effect of this binding on FMR1 expression was not established. In this work, we characterized the FMRP binding site (FBS) within the FMR1 mRNA by a site directed mutagenesis approach and we investigated its importance for FMR1 expression. We show that the FBS in the FMR1 mRNA adopts two alternative G-quartet structures to which FMRP can equally bind. While FMRP binding to mRNAs is generally proposed to induce translational regulation, we found that mutations in the FMR1 mRNA suppressing binding to FMRP do not affect its translation in cellular models. We show instead that the FBS is a potent exonic splicing enhancer in a minigene system. Furthermore, FMR1 alternative splicing is affected by the intracellular level of FMRP. These data suggest that the G-quartet motif present in the FMR1 mRNA can act as a control element of its alternative splicing in a negative autoregulatory loop.


Assuntos
Processamento Alternativo , Proteína do X Frágil de Retardo Mental/genética , Quadruplex G , RNA Mensageiro/química , Sequências Reguladoras de Ácido Ribonucleico , Adenina/química , Animais , Sequência de Bases , Sítios de Ligação , Células Cultivadas , Éxons , Proteína do X Frágil de Retardo Mental/metabolismo , Células HeLa , Humanos , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Células PC12 , Biossíntese de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Mensageiro/metabolismo , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...